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Abstract

Block-structured adaptive mesh refinement is a technique that can be used when
solving partial differential equations to reduce the number of zones necessary to
achieve the required accuracy in areas of interest. These areas (shock fronts, ma-
terial interfaces, etc.) are recursively covered with finer mesh patches that are
grouped into a hierarchy of refinement levels. Despite the potential for large sav-
ings in computational requirements and memory usage without a corresponding re-
duction in accuracy, AMR adds overhead in managing the mesh hierarchy, adding
complex communication and data movement requirements to a simulation. In this
paper, we describe the design and implementation of a native GPU-based AMR
library, including: the classes used to manage data on a mesh patch, the routines
used for transferring data between GPUs on different nodes, and the data-parallel
operators developed to coarsen and refine mesh data. We validate the performance
and accuracy of our implementation using three test problems and two architec-
tures: an eight-node cluster, and over four thousand nodes of Oak Ridge National
Laboratory’s Titan supercomputer. Our GPU-based AMR hydrodynamics code
performs up to 4.87x faster than the CPU-based implementation, and has been
scaled to over four thousand GPUs using a combination of MPI and CUDA.



1 Introduction

Block-structured adaptive mesh refinement (AMR) allows for fewer resources to
be used to achieve the required accuracy in interesting areas of a problem [4, 5].
These areas of interest (shock fronts, material interfaces, etc.) are refined, and
recursively covered with rectangular patches of computational mesh at a higher
resolution. The patches are grouped into a hierarchy of levels of refinement that
dynamically adapt throughout the computation as the areas of interest move. De-
spite the potential for large savings in resource usage with maintained accuracy,
AMR requires dedicating a portion of application runtime to managing the mesh
hierarchy; this requires complex data management and communication.

Most AMR applications run exclusively on the CPU, and those that do use
GPUs often copy the necessary data between GPU and CPU memory at the be-
ginning and end of every GPU-based routine [14, 16, 20]. We present a native
implementation of AMR on GPUs. Building on the SAMRAI framework [2], we
create classes that manage the life cycle of AMR patches where data is stored ex-
clusively on the GPU. All routines that manage the patch hierarchy continue to be
handled by SAMRAI on the CPU, but all AMR-specific routines that operate on
patch data, such as the coarsening and refining of data between adjacent levels in
the hierarchy, execute on the GPU.

Using the object-oriented interface of SAMRAI we develop a set of routines
and data structures that allow patch-based data to reside on and be manipulated by
the GPU. Using these extensions we write a GPU-based AMR hydrocode, Clev-
erLeaf, that performs up to 4.87x faster than the CPU-based implementation on
a single node, and has already been scaled to four thousand nodes using a com-
bination of MPI and CUDA. We describe the design and implementation of our
GPU-based AMR library extensions in this paper, including the classes used to
manage patch data, the routines used for transferring data between GPUs on dif-
ferent nodes, and the data parallel operators developed to coarsen and refine mesh
data. We also validate the accuracy of our implementation on three test problems,
and present performance studies using up to 4096 NVIDIA K20x GPUs.

2 Background and Related Work

In this section we briefly describe the necessary background to understand the re-
mainder of the paper, including a description of AMR and GPU computing; we
also provide a thorough review of related work.
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Figure 1: Example adaptive mesh and corresponding grid hierarchy.

2.1 Adaptive Mesh Refinement

Adaptive mesh refinement uses a hierarchy of nested, logically rectangular grids
over which the partial differential equation being solved is discretised. As in Berger
et al. [4,5], we provide a formal notation for our hierarchy in terms of these grids.
The coarsest grid is the base grid, specified at the start of the computation and de-
noted Gp. It may be composed of several possibly overlapping patches. This base
grid remains fixed throughout the simulation. Each component patch is denoted
Go,j, and thus G| is the union of its components G ;:

Go = UjGo’j (D)

During the simulation, refined sub-grids of patches will be created in response to
features in the solution. Sub-grids are not placed in the coarse grid, but on top of it.
Each sub-grid is defined independently and has its own solution vector, and can be
advanced almost independently of all other grids. These independent grids provide
a natural method of domain decomposition allowing for easy parallelisation of the
algorithm.

Fine sub-grids can contain finer sub-grids within their boundaries. Sub-grids
are recursively generated to provide the necessary level of refinement, creating a
hierarchy of grid levels. The coarse grid G is at level 0 in the hierarchy. Sub-grids
of G are part of (G; and are described as level 1 refinements. Refined grids within
(1 are at level 2. A nested sequence of sub-grids may be created to cover a portion
of the domain. Figure 1 shows an example hierarchy containing three grid levels.

The mesh spacing, or resolution, h; for each grid level [ is normally specified
in advance, where each h; is an integer multiple of h;_1. The relationship between
the mesh spacing at each level is typically specified as the refinement ratio:

hi—1
T = 7}”

2)
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Grids at different levels of the hierarchy must be properly nested. A fine grid must
start and end at the corner of a cell in the next coarser grid, and there must be at
least one level [ — 1 cell separating a grid cell at level [ from a cell at level [ — 2 in
any direction unless the cell is at the physical boundary of the domain. The proper
nesting requirement does not require a fine grid to be contained in only one coarse
grid, so one fine grid may be nested in two or more coarser grids.

The AMR algorithm has three main components: (i) advancing the simulation
using some finite difference scheme, (ii) error estimation and hierarchy generation,
and (iii) inter-level operations such as solution projection and the filling of patch
boundaries. These procedures are interleaved to correctly and conservatively ad-
vance the simulation on the adaptive hierarchy. When the simulation is initialised,
the error estimation and hierarchy generation procedure must be used to generate
the hierarchy, since only the coarsest level is specified by the user. Once the hi-
erarchy is created, the main loop of the simulation proceeds as follows: first, the
boundary conditions of each patch are filled; second, the simulation is advanced
in time using the integration algorithm; third, the error estimation and hierarchy
generation procedure is used to update the simulation grid.

Each patch will require some data to be placed in additional cells around the
patch edge to provide boundary conditions for the system of partial differential
equations. Boundary data for each patch can be filled in one of three ways: (i) with
the physical boundary conditions, (ii) with the data from a neighbouring patch on
the same level, or (iii) with the data from a neighbouring patch on the next coarsest
level. When data is transferred between levels it must be interpolated to correctly
fill the increased number of smaller cells on the finer level.

Since each patch is defined as an independent computational entity with its
own solution storage, each patch can be integrated in time independently once its
boundary values are supplied. This independence means that, using the patch as a
basic unit of work in the simulation, work can be easily shared between multiple
processes. The solution on a patch is modified in the case when a cell is covered
by a fine grid, and the coarse cell value is replaced by a conservative average of the
fine cell values that cover the coarse cell.

At the beginning of the simulation, and with a given frequency, an error estima-
tion procedure is invoked to determine the structure of the patch hierarchy. When
more than one level of patches exists, the procedure is applied recursively from the
second finest to the coarsest level of the hierarchy. This regridding procedure has
three steps: flagging, where a heuristic is applied to determine which level [ cells
ought to be covered by the level [ 41 patches; clustering, where the new set of level
[ patches is created from a set of flagged cells on level [ — 1; and solution trans-
fer, where data is copied from the old to the new hierarchy. Once the regridding
procedure is completed, the next time step starts and the main algorithmic steps

4



(boundary value determination, integration, and regridding) are repeated until the
end of the simulation.

2.2 Programming Models for Graphics Processing Units

Programming for GPUs requires the use of a programming model such as CUDA,
OpenCL, or OpenACC. For this work, we use NVIDIA’s CUDA programming
model, as it is the most mature and feature-rich model for programming NVIDIA
hardware. GPU functions are written as kernels which are executed simultaneously
in a single-instruction-multiple-data (SIMD) fashion on the device. A CUDA-
capable GPU is a collection of stream multiprocessors (SMs), consisting of a num-
ber of stream processors (SPs) that share an instruction cache.

The CUDA programming model revolves around the concept of threads, blocks,
and grids that execute on these hardware units. A thread executes on a single SP,
and blocks are groups of threads that are mapped to SMs and will execute concur-
rently. A grid is a collection of thread blocks, typically dependent on the size of
the data being maninpulated. The grid can be either one- or two-dimensional, and
defines the total index space for the threads. These grids are used to map threads
onto portions of the application domain. When a device kernel is launched, each
thread runs one instance of the kernel. The co-ordinates of a thread can be accessed
inside the kernel, allowing each thread to determine which elements of global data
to process.

OpenCL uses a similar programming model to CUDA, with GPU functions
being written as kernels that will be executed in parallel on a given device. The
OpenACC model is different, having more in common with OpenMP. It relies
on source code annotation using directives to mark regions of code for execution
on the GPU. The use of CUDA in our work is an implementation detail, and the
techniques we apply would map equally well to OpenCL and OpenACC.

2.3 Adaptive Mesh Refinement with Graphics Processing Units

Berger’s adaptive mesh refinement algorithm was presented in 1984, and many
computational physics codes have been ported to GPUs since the release of CUDA
in 2007. However, there is little work where AMR codes have been ported to GPUs.
We suppose that this is due to the large amount of data management required when
updating the adaptive hierarchy, and the fact that naive method for porting codes
to GPUs revolves around repeatedly copying simulation data to and from the GPU
across the slow PCI bus.

An early paper by Wang et al. describes an implementation of a compressible
flow solver with AMR on GPUs [20]. At the beginning and end of the Runge-



Kutta kernel used to advance the solution, the required data must be copied from
the CPU to the GPU. This basic implementation achieves a 10x speedup over
a single CPU core, although with today’s supercomputer nodes typically having
at least 16 processor cores, this number is not high enough to make this method
useful.

In [6] the authors briefly describe a forest-of-octrees based AMR algorithm
for seismic wave propogation on GPUs. The implementation doesn’t appear to be
native, as although the text lacks sufficient details about the GPU-based implemen-
tation, the results presented include timings for transferring the mesh and initial
data to the GPU from the CPU memory. Nevertheless, the parallel performance of
the code is scalable on up to 256 GPUs.

Schive et al. introduce GAMER, an astrophysical simulation code with both
AMR and GPU support [17]. Both the Eulerian hydrodynamics and self-gravity
phases of the application are solved on the GPU, but the necessary data is stored in
the CPU memory, and must be transferred to the GPU memory before the compu-
tational kernel is launched. The data transfer is performed concurrently with other
computation, so the imapact is minimised, and the authors note that data transfer
time typcially only takes 30% of the application runtime. The Uintah framework
from the University of Utah is an AMR framework that supports GPUs [11, 14].
The focus in Uintah is on heterogeneous platforms, and as with GAMER, solution
data must be copied between the CPU and GPU memory as required by the numer-
ical kernels. These data transfers are overlapped with other work, but nevertheless,
this is not a fully native framework.

Shamrock is an Eulerian hydrodynamics code with AMR, similar to Clever-
Leaf, that supports exectution on GPUs via OpenCL [9]. Only a small fraction of
the necessary methods are ported to the GPU, and data is again copied between
the CPU and GPU memory at the beginning and end of the four routines that are
ported. As is to be expected, the performance of the GPU-based routines was bet-
ter than the CPU-based equivalents when data transfer time was excluded. Using a
simple performance model and the application of Amdahl’s law, the authors predict
an order of magnitude speed up if 95% of the application is ported to the GPU and
data transfer only occurs at the start and end of the simulation.

The CLAMR application developed at Los Alamos National Laboratory is a
cell-based AMR code that solves the shallow-water equations [15]. Implemented
in OpenCL, the code is native; initial conditions are set on the CPU and then copied
to the GPU memory at that start of the simulation, but data is not copied back to
the CPU during the simulation timestep. The cell-based scheme is different to the
block-structured approach described by Berger and used in our work.

The most promising application is presented in an unpublished work [16] which
describes a native implementation of patch-based AMR application for solving the
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Figure 2: Class relationships for the CudaArrayData-based datatypes.

shallow-water equations. The authors take a similar approach to our library and
ensure all computationally expensive parts of the AMR library are handled on the
GPU, and they demonstrate performance improvements of up to 3.4 x compared to
a uniform GPU-based implementation of the same algorithm. Despite the similar-
ities to our work, the domain (shallow-water equations) is different, and this work
remains unpublished.

To the best of our knowledge we have developed the only native GPU-based
shock hydrodynamics code with AMR. Furthermore, by developing the necessary
code as part of the SAMRALI library, we provide a collection of components that
can be re-used in other block-structured AMR applications.

3 Design and Implementation

The SAMRALI library uses object-oriented design patterns to allow for easy inter-
action with user-supplied code [10]. Each of the basic structural units of the AMR
hierarchy: patches, patch levels, and the patch hierarchy itself; are provided as
fundamental software constructs by SAMRAI. The Patch class is a container
for all the data living in a particular mesh region, and provides a way to access
this data. All the data on a patch are handled using Pat chData objects, each of
which represents some simulation quantity on the mesh. The PatchData inter-
face uses the Strategy design pattern [19], and defines a set of operations that an
object must provide in order to be interoperable with SAMRAI’s data management
and communication routines.

Our GPU-based implementation is based upon a collection of PatchData
classes for data defined on the zones, nodes, and edges of a patch. All these
datatypes have something in common: an array stored in GPU memory defined
over some arbitrary box in the problem space. We group all common function-
ality into a CudaArrayData class that manages this data, and specialise it for
each data centering (see Figure 2). Each PatchData object will be defined to



store data over some region of the simulation domain, as defined by the Patch
that owns the object. Upon construction, the upper and lower indices of this re-
gion will be passed to the class, so that an appropriate amount of data storage can
be allocated. In the case of the CudaCellData class, this is one array element
per element. However, in the case of the CudaNodeData and CudaSideData
classes we must allocate additional space to store all the node- and side-centred
elements. Each class provides an accesor method for the pointer allocated in GPU
memory. This pointer can be passed to any CUDA kernel in order to advance the
simulation. The use of our classes in a real application is described in detail in a
later section.

During an AMR simulation, boundary conditions can be filled in one of three
ways: (i) using the physical boundary conditions; (ii) with data from a neighbour-
ing patch on the same level; or (iii) with data from a patch on the next coarser
level. Filling the boundary cells with the physical boundary conditions is handled
by the application, and requires no additional features to be added to our library.
When data must be transferred between patches, the copy routine is used. For two
patches on the same level the copy routine is passed the two Patch objects and
a Box that defines the area that needs to be filled. Since the data for both patches
resides in GPU memory, we use a CUDA kernel that copies the data in the over-
lapping region from one patch to another. The kernel is launched using one thread
per cell in the overlap region, so all data is copied in parallel.

If the two patches involved in the copy operation are located on different nodes
the required data must be transferred using MPI. Supporting MPI is essential for
any modern scientific code, and by including the necesary routines in our library
we can run on multiple GPUs. So far, these routines have been shown to scale to up
to 4096 GPUs. The PatchData interface described previously defines routines
(packStream and unpackStream) that are used by SAMRALI to transfer both
halo data and coarse or fine data between patches residing on different nodes. We
provide CUDA kernels to pack data from the required region into a contiguous
buffer in GPU memory. This buffer is then copied to the host memory and passed
to SAMRALI, which handles the MPI communications. To unpack received data,
the buffer is copied into the GPU memory and then unpacked in parallel using
another CUDA kernel. Once the data has been transferred, a new PatchData
object is created locally and the copy operators described previously can be used to
fill the boundary cells on the receiving processor. We launch one CUDA thread per
element to be packed into the buffer, ensuring the maximum amount of parellism
is exposed. As an example, Figure 3 shows how the overlapping region is copied
into the contiguous buffer in parallel.

A key part of AMR is transferring data between levels. Fine patches that border
coarser patches require interpolated ghost data, and new fine patches will be filled
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Figure 3: Parallel buffer packing for MPI operations.
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Figure 4: Flexible CPU and GPU implementation of CleverLeaf.

with an interpolated version of the coarse solution. At the end of every timestep,
fine solution data is coarsened onto the coarser levels of the hierarchy. We have
developed refine operators that linearly interpolate zone-, node- and edge-centred
data, and a coarsen operator that “inject” zone-centred data. All these operators
run in parallel on a GPU. Operators that conservatively coarsen zone-centred data
using volume-weighting and mass-weighting have also been developed as part of
the CleverLeaf mini-application, and are described later in the paper.

4 CleverLeaf

The GPU-based SAMRALI extensions described so far have been used to port the
CleverLeaf mini-app to GPUs. The original version of CleverLeaf is a CPU-based
code, which extends the CloverLeaf mini-app by adding AMR [3]. CloverLeafis a
2D explicit hydrodynamics mini-app that solves Euler’s equations on a structured
grid [8,12,13]. Both CloverLeaf and CleverLeaf are available for download as part
of the Mantevo suite [1].

CleverLeaf uses a single class to control the integration of the numerical so-
Iution over patches. This class functions as a black box, and the remaining rou-
tines written to advance the simulation on the mesh hierarchy can remain un-
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Figure 5: Data-parallel coarsen operators implemented in CUDA.

changed even when a different patch integrator is used. The similarity in the inter-
faces between the CPU-based PatchData classes and their GPU-based coun-
terparts meant that we were able to easily modify the existing code. To port
CleverLeaf to GPUs, we created a new patch integrator, and all references to
CPU-based PatchData objects were replaced with GPU-based objects, and the data
from these objects was passed to CUDA kernels rather than the existing numer-
ical methods written in Fortran. Figure 4 shows how the two patch integrator
classes are driven by the top level algorithm. The communications are handled
by the LagrangianEulerianLevelIntegrator class and SAMRAIL The
PatchData interface ensures that no additional changes are needed when using
data allocated on the GPU.

Additionally, we have written mass-weighted and volume-weighted coarsen
operators that run on the GPU; these are are required to conserve mass in the sim-
ulation. Each coarsen operator follows the same general pattern, with one CUDA
thread being launched for every coarse value that needs to be filled. This thread
then reads the relevant fine values and performs the necessary mathematical oper-
ations to calculate the coarse value. Figure 5 shows this operation for the volume-
weighted coarsen.

The only other routine that requires data to be copied from GPU to host mem-
ory is the regridding phase, where the patch hierarchy is recreated to track moving
features in the solution. Cells are flagged for refinement on the GPU using a data-
parallel tagging kernel that evaluates the tagging heuristic for each cell on a patch
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Figure 6: Plot of density, velocity, and energy at ¢ = 0.2 for Sod’s shock tube
problem.

in parallel. This set of flagged cells is then copied to host memory and passed
to SAMRALI to generate the new patch hierarchy. For improved performance, we
compress the set of tags on the device from integers to bits, this reduces the amount
of data that must be transferred by % We also only copy back the array of tags
for patches where some tag is set, avoiding redundant copies of arrays that will not
affect the structure of the hierarchy.

S Accuracy and Performance

In this section we present a detailed study of the accuracy and performance of Clev-
erLeaf. Despite the main role of mini-apps being to investigate issues surrounding
application performance, we present an accuracy study to reassure the reader that
our GPU-based library functions correctly and is ready to be used in a production
application.

5.1 Accuracy

To verify the accuracy of the results produced by CleverLeaf, we have used three
test problems, comparing numerical results to exact, or converged, solutions. Whilst
these test problems are somewhat contrived, the goal of CleverLeaf is not to sim-
ulate complex hydrodynamic systems, and instead to provide an accurate indicator
into the performance of AMR and hydrodynamics algorithms of interest. Validat-
ing the accuracy of CleverLeaf allows us to be confident that the AMR and hy-
drodynamics routines are correctly implemented, and that they will represent more
complex codes using similar algorithms.

5.1.1 Sod’s Problem

The shock tube problem described by Sod [18] provides a good test of a code’s
ability to capture contact discontinuities, shocks, and the rarefaction profile. Con-
sisting of two regions of fluid of different intial densities and pressures, the fluids
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are initially at rest, with the initial conditions being specified as follows:

o =1 pr = 0.125 3)
m=1 pr =0.1 4)

The interface is at the point x = 0.5. At time ¢ > 0 the two regions begin to
interact, with a shock wave forming and travelling towards the right-hand boundary
of the domain.

Figure 6 shows the density, velocity and energy profiles of the domain at time
t = 0.2. CleverLeaf was run with 3 levels of AMR, a refinement ratio of 2, and a
resolution of Az = 0.001 at the finest level. The solution contains a small error
at the contact discontinuity and in the rarefaction, however across the rest of the
domain the solution is almost exact, and no oscillations are present. These small
errors at the discontinuity are expected due to the numerical noise associated with
modelling a discontinuity using a second-order method.

5.1.2 Interacting Blastwaves

Despite not having an analytic solution, Woodward and Collela’s interacting blast-
wave problem [21] can be solved to mesh convergence. We can then compare the
error at lower mesh resolutions to understand the behaviour of CleverLeaf as the
number of refinement levels is increased.

The interacting blast wave problem consists of a two reflecting walls seperated
by distance unity. The density p = 1.0 throughout the problem, and three regions
of ideal gas with different initial pressures are used to create the strong shocks.
The left region makes up the leftmost tenth of the volume; the right region, the
rightmost tenth. The initial pressures in the left, middle and right regions of the
domain are:

p; = 1000 Pm = 0.001 pr = 100 (5)

We ran the Woodward-Colella problem with between one and six maximum
levels of refinement, giving effective resolutions from 100 to 3,200 cells. We also
ran the problem with a resolution of 50,000 cells in order to obtain a highly ac-
curate solution with which to compare each of the resolutions. Figure 7 contains
plots of the density, energy, and velocity of the system at time ¢ = 0.038 for both
the converged, and the one- and two- and four-level solutions. As the maximum
number of levels is increased, the AMR solution converges towards the reference
values for all three field quantities.

12
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Figure 7: Plot of density, velocity, and energy at ¢ = 0.038 for the Woodward-
Colella interacting blastwaves problem.

IPA Titan
Processor  Intel Xeon E5-2670 AMD Opteron 6274
Clock 2.6 GHz 2.2 GHz
Accelerator NVIDIA Tesla K20x NVIDIA Tesla K20x
PCI gen
Nodes 8 18,688
CPUs/node 2 x 8 cores 1 x 16 cores
GPUs/mode 2 1
CPU RAM/node 128 Gb 32Gb
GPU RAM/node 6 Gb 6 Gb
Interconnect Mellanox FDR Infiniband  Cray Gemini
Compiler Intel 13.1.163 Intel 13.1.3.192
MPI MVAPICH 1.9 Cray MPT
CUDA Version 5.5 5.5

Table 1: TPA and Titan: hardware and software configurations.

5.2 Performance

To asses the performance and scalability of our implementation we performed a
series of experiments using two different architectures: the IPA testbed machine
at Lawrence Livermore National Laboratory and the Titan supercomputer at Oak
Ridge National Laboratory. The hardware and software configuration of each plat-
forms is detailed in Table 1. The experiments use a range of problem sizes and node
counts, and are designed to test both serial performance and parallel scalability.

5.2.1 Serial Performance Analysis

Our first study compares a single NVIDIA Kepler K20x to one node (16 cores)
of dual-socket Intel Xeon E5-2670 “Sandy Bridge” running at 2.6GHz. We use
the Sod problem described previously and run 1000 timesteps at a range of coarse
resolutions from 3 thousand to over 6 million zones, using 3 levels of refinement
and a refinement ratio of 2. Figure 8(a) contains the results of this experiment. At
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Figure 8: CPU vs. GPU performance comparison on up to 16 GPUS.

small problem sizes the GPU and CPU performance are similar, however, at large
problem sizes, we see a performance improvement of over 2.6 x. This performance
improvement at larger problem sizes is typical of the throughput-oriented GPU
architecture.

5.2.2 Parallel Performance Analysis

The second performance experiment investigates the scalability of our code as the
number of GPUs is increased from 2 to 16 (1 to 8 nodes), we also include equivalent
results for the CPU-based code. The experiment is a strong-scaling study, where
the problem size remains constant as the number of GPUs (or nodes) is increased.
We use the 6.4 million zone problem and run for 1000 timesteps. The results of this
experiment are detailed in Figure 8(a), and for all node counts, the performance of
the GPU-based code is better than the GPU-based code. For a single node, with
two GPUs compared against two CPUs (16 cores), the GPUs are 4.87x faster. At
eight nodes (16 GPUs vs. 128 cores) the GPU-based code is still 1.92x faster.
We attribute this reduction in performance to the data transfer required during the
boundary exchanges and the regridding phase beginning to dominate the simulation
runtime; a consequence of running our experiment as a strong-scaling study and the
effects of Amdahl’s law. Since the parallel region of the code is so small, runtime
is dominated by the serial fraction and as additional GPUs are added, the parallel
region represents only a small portion of overall runtime compared to the serial
regions of the code [?].

Our third experiment investigates the performance of our code at large scale,
running on over four thousand GPUs on the Titan system at Oak Ridge National
Laboratory. This experiment is a weak-scaling study, where the problem size is
increased as the number of GPUs is increased. In theory, this means that each
GPU will have a constant amount of work, and any costs associated with using
an increasing number of nodes will be highlighted. We use a modified version of
the triple point shock interaction probelm presented in [7]. A rectangular domain is
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(a) p and finest level patches at ¢ = (b) p and finest level patches at ¢t =
0. 2.5.

Figure 9: Triple point shock interaction: initial and final density and patch config-
uration.
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Figure 10: Weak-scaling performance analysis on Titan.

split into three regions, and as the simulation progresses from the initial state shown
in Figure 9(a), a strong shock travels from left to right. This shock generates a large
amount of vorticity and creates a complex area of interest, creating a large number
of patches that are shown as black lines in Figure 9(b).

We run at seven different node counts, from 1 to 4,096; we use effective res-
olutions from 2 million to over 8 billion cells with 3 levels of refinement and a
refinement ratio of 2. Weak scaling an AMR problem can be difficult since keep-
ing the computational work per-GPU the same is difficult. In this experiment we
increase only the coarse resolution and always run to the same physical end time
regardless of the number of timesteps required. Figure 10 presents our results, nor-
malised as average grind times per-cell for each node count. Each component of
simulation runtime gradually increases as more nodes are added, however, we are
able to run the problem on over four thousand nodes. It is also interesting to note
that the majority of the simulation runtime is spent in the hydrodynamics of the
application (including numerical kernels and halo exchanges). The AMR-specific
runtime components, regridding and synchronisation, comprise only a fraction of
the overall runtime.
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6 Conclusions and Future Work

In this paper we have described our native GPU-based AMR package, and shown
how it can be used in a hydrodynamics mini-application. Using the object-oriented
design of the SAMRALI library we developed a set of classes that allocate and
manipulate patch-based data on the GPU. Our implementation is native, with data
residing in GPU memory at all times, and we provide the routines necessary for
transferring data between GPUs on different nodes, and coarsening and refining
data in parallel on the GPU. The novelty of this work lies in the fact that our
implementation is native, and that we have developed the first fully data-parallel
versions of a range of coarsen and refine operators. We validated the accuracy of
our implementation, and compared the performance and scalability of our GPU-
based code to the exsting CPU-based code. The GPU-based code is up to 4.87 x
faster than the CPU-based code, and we have demonstrated scalability on up to
4096 GPUs on the Titan system at Oak Ridge National Laboratory. In future work
we plan to investigate ways to mitigate the performance impact of copying data
between the GPU and host memory by overlapping data transfer and computation.
We also plan to investigate mechanisms to allow patches to be “spill over” into CPU
memory and then be transferred back to the device when necessary, this will allow
larger problems to be solved and increase the relevance of our implementation to
production codes.
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